How will your business use an EnvisionTEC 3D Printer?

There’s Only One 3D-Bioplotter®

Well, actually, we have three. But when medical researchers and manufacturers are talking about “the bioplotter,” that’s a nod to our bioprinter technology. A recognized world leader in biofabrication, EnvisionTEC’s 3D-Bioplotter family is being used for groundbreaking medical research and manufacturing. Launched in 2000, the 3D-Bioplotter is the most seasoned bioprinter in the market, backed by the most research, more than 150 research papers to date.


Dipl. Chem. Carlos Carvalho, Process & Material Development, EnvisionTEC.

“I personally find it fascinating seeing what researchers will do with it next,” said Carlos Carvalho, who led the development of the fourth generation of the 3D-Bioplotter and has worked on the bioprinter since its infancy at the University of Freiburg in Germany. Carvalho cited as an example a 2012 paper about 3D printing graphene that was done with the 3D-Bioplotter as launching an entirely new area of research. The EnvisionTEC bioprinter has also been used to fabricate hyperelastic boneovary implants, a placenta model and is being used in bone regeneration research.

With three levels of functionality — Starter, Developer and Manufacturer — this family of bioprinters, as shown below, processes open-source biomaterials using air or mechanical pressure to a syringe, which can fabricate scaffolds to create tissue, organs and more. Our bioprinters are extremely accurate with X-Y repeatability down to 1 μm. All models have been designed for use in a sterile biosafety cabinet, meet standards for clinical trials and offer build sizes up to 192.4 cubic inches.

Developed at the University of Freiburg, the bioprinting technology used by the 3D-Bioplotter allows for maximum flexibility for research and development. The system uses modular components, such as sterilized heating and cooling cartridges, standard Luer-Lok syringes with standard needle-tip sizes and an easy-to-use 365 nm UV curing head. “It’s a popular tool because it’s a very flexible, but also user-friendly machine,” Carlos explained. The software also allows for maximum freedom in combining different materials using different temperatures.

Many machine features vary between models. For example, the Manufacturer model allows for 5 print heads and also includes a heated platform and sterile filter, which is recommended for cell and organ printing.

The 3D-Bioplotter family is also made with high-quality components and is extremely reliable, allowing R&D to spend more time printing. Rahul Roy, a North American service and applications engineer and 3D-Bioplotter expert, credits the German engineering and manufacturing. The 3D-Bioplotter, he said, “is built like a battleship.”

carlos-square-150x150  Logo_Uni_Freiburg-150x150



Filters Included


Platform Temperature Control


Primary Markets



Filters Included

Particle and Sterile

Platform Temperature Control

Yes (Chiller not included): -10° - 80°C (14° - 176°F)

Primary Markets

3D-Bioplotter® 制造级系列


Filters Included

Sterile and Particle

Platform Temperature Control

Yes (Chiller Included): -10° - 80°C (15° - 176° F)

Primary Markets

Contact Us

* Required